The Circuit Partition Polynomial with Applications and Relation to the Tutte and Interlace Polynomials
نویسنده
چکیده
This paper examines several polynomials related to the field of graph theory including the circuit partition polynomial, Tutte polynomial, and the interlace polynomial. We begin by explaining terminology and concepts that will be needed to understand the major results of the paper. Next, we focus on the circuit partition polynomial and its equivalent, the Martin polynomial. We examine the results of these polynomials and their application to the reconstruction of DNA sequences. Then we introduce the Tutte polynomial and its relation to the circuit partition polynomial. Finally, we discuss the interlace polynomial and its relationship to the Tutte and circuit partition polynomials.
منابع مشابه
The Interlace Polynomial : a New Graph Polynomialrichard Arratia
LIMITED DISTRIBUTION NOTICE: This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It has been issued as a Research Report for early dissemination of its contents. In view of the transfer of copyright to the outside publisher, its distribution outside of IBM prior to publication should be limited to peer communications and sp...
متن کاملTutte polynomials of wheels via generating functions
We find an explicit expression of the Tutte polynomial of an $n$-fan. We also find a formula of the Tutte polynomial of an $n$-wheel in terms of the Tutte polynomial of $n$-fans. Finally, we give an alternative expression of the Tutte polynomial of an $n$-wheel and then prove the explicit formula for the Tutte polynomial of an $n$-wheel.
متن کاملThe interlace polynomial of a graph
Motivated by circle graphs, and the enumeration of Euler circuits, we define a one-variable “interlace polynomial” for any graph. The polynomial satisfies a beautiful and unexpected reduction relation, quite different from the cut and fuse reduction characterizing the Tutte polynomial. It emerges that the interlace graph polynomial may be viewed as a special case of the Martin polynomial of an ...
متن کاملIdentities for circuit partition polynomials , with applications to the Tutte polynomial
The Martin polynomials, introduced by Martin in his 1977 thesis, encode information about the families of circuits in Eulerian graphs and digraphs. The circuit partition polynomials, J (G;x) and j ( G;x), are simple transformations of the Martin polynomials. We give new identities for these polynomials, analogous to Tutte’s identity for the chromatic polynomial. Following a useful expansion of ...
متن کاملDistance Hereditary Graphs and the Interlace Polynomial
The vertex-nullity interlace polynomial of a graph, described by Arratia, Bollobás and Sorkin in [ABS00] as evolving from questions of DNA sequencing, and extended to a two-variable interlace polynomial by the same authors in [ABS04b], evokes many open questions. These include relations between the interlace polynomial and the Tutte polynomial and the computational complexity of the vertex-null...
متن کامل